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Secondary flow in non-isothermal viscoelastic parallel-plate flow
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Abstract. The non-isothermal, parallel-plate flow of a viscoelastic fluid is investigated. Using the singular pertur-
bation method the problem for the stream function χ is reduced to a non-homogeneous boundary-value problem
for the biharmonic operator in an infinite strip. An exact solution is then obtained using Fourier integral trans-
forms. Our analysis shows the existence of thermally induced recirculating eddies, even when inertia is neglected.
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1. Introduction

The non-isothermal flow of a viscoelastic fluid between two coaxial disks is considered. In
viscometric applications, this flow forms the basis for obtaining rheological properties such as
the viscosity and normal stress coefficients of a fluid. These measurements are based on the
assumption that the flow is steady, purely azimuthal and isothermal. Any significant departure
from this base flow could lead to appreciable errors in the predicted material properties [1, p.
226] and [2, p. 80]. The assumption that the flow is one-dimensional is valid, however, only
if inertia is neglected. The presence of inertial forces gives rise to the formation of a recircu-
lating eddy motion which is superimposed on the purely azimuthal flow [3–6]. For flows with
very small Reynolds number, and hence very small inertial forces, the secondary flow is very
weak and therefore may be neglected. Under isothermal conditions, viscoelastic fluids behave
in a qualitatively similar fashion when sheared between coaxial parallel plates provided that
the shear rate is not too large [7,8]. At sufficiently large shear rates, even the creeping flow
of viscoelastic fluids is known to be subject to purely elastic instabilities [9–12]. Above some
critical shear rate there is a Hopf bifurcation to a time-dependent flow and the formation
of secondary roll cells [13–15]. Thus, above some critical shear rate, prediction of rheological
properties based on the basic torsional-flow assumption is no longer accurate.

When a fluid is sheared continuously between two plates, viscous dissipation can cause sig-
nificant temperature changes in the fluid. This is especially true for polymeric liquids which
are poor conductors and have strongly temperature-dependent viscosities. It is well known
that viscous heating can lead to significant errors in viscometric measurements [1,16,17]. The
effect of viscous dissipation on torsional flow of Newtonian and power-law fluids has been
analyzed in [18–20]. For viscoelastic fluids governed by the Oldroyd-B model, similar analy-
ses have been reported in [21,22]. In all these studies the flow is assumed to be purely azi-
muthal and with the exception of [18,21], the flow domain is assumed to be infinite. In [18],
the velocity profile was assumed to be isothermal and the energy equation which is linear was
solved numerically by a variational method. In [21] perturbation methods were used to solve
the problem for both the temperature and non-isothermal velocity profiles. In this paper we
show that for non-isothermal viscoelastic torsional flow the one-dimensional flow assumption
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also fails. In particular, we show the existence of secondary vortices even in the absence of
inertia. This suggests that corrections due to viscous heating may be necessary, not only for
the viscosity but also the normal-stress coefficients. To the best of our knowledge, there is no
theoretical analysis on the existence or otherwise of secondary flow in non-isothermal, creep-
ing viscoelastic torsional flow.

2. Governing equations

We consider steady, axisymmetric, non-isothermal flow of an incompressible viscoelastic fluid
between two coaxial disks of radius a, separation h, and aspect ratio α ≡ h/a. The fluid is
subjected to a shearing motion by rotating the top plate at a constant angular speed ω.

In dimensional form, the equation governing the steady flow of an incompressible visco-
elastic fluid are the continuity equation [1, Chapter 7]

∇ · ṽ =0, (2.1)

and the momentum equation, which in the absence of inertia is given by

0=−∇p̃ +∇ · σ̃ , (2.2)

where ṽ is the velocity, p̃ is the pressure and σ̃ is the stress tensor. The stress tensor can be
written as

σ̃ =ηs
˙̃γ + τ̃ ,

where ˙̃γ is the rate-of-strain tensor, τ̃ is the extra stress arising from the polymer and ηs is the
solvent viscosity. In this paper we will consider a viscoelastic fluid described by the Oldroyd-B
constitutive model. A non-isothermal version of this model based on the pseudo-time hypoth-
esis gives the following equation for the extra stress τ̃ [23, Chapter 11], [24]

τ̃ +λ[ṽ ·∇τ̃ − (∇ṽ)Tτ̃ − τ̃∇ṽ − τ̃ ṽ ·∇ log T̃ ]=ηp
˙̃γ , (2.3)

where λ is the relaxation time and ηp is the polymer viscosity. If T̃ is constant, we recover
the isothermal Oldroyd-B equation. Neglecting inertia, we obtain the energy equation for the
temperature T̃ as follows:

0=κ∇2T̃ + σ̃ :∇ ṽ, (2.4)

where κ is the conductivity.
The boundary conditions are no slip at the plates and constant temperature T̃w at the

plates which, for simplicity, we assume is equal to the ambient temperature. At the center-
line r̃ = 0 we require symmetry while, at the free surface F̃ (r̃, z̃) ≡ f̃ (z̃) − r̃ = 0, we have the
following interface conditions

v ·∇F̃ =0, (2.5)

and

(p̃ −pa)n + σ̃ ·n =γHn. (2.6)

Finally we require that the free surface remains pinned to the plates

f̃ (0)= f̃ (h)=a. (2.7)
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Here pa is the atmospheric pressure, γ is the surface tension, n is the outward normal and
H is the mean curvature of the surface. The relaxation time λ, and the viscosities ηs and ηp

are strongly temperature-dependent and will be modelled by a Nahme type law [17,20,26,27]
as follows:

λ=λ0
T̃0

T̃
e−�, ηs =ηs0e−�, ηp =ηp0e−�.

where �=δ(T̃ − T̃0)/T̃0 is a dimensionless temperature. Here λ0 denotes the relaxation time at a
reference temperature T̃0, while ηs0 and ηp0 are, respectively, the solvent and polymer viscosities
at the reference temperature. The quantity δ is a dimensionless thermal-sensitivity parameter of
the fluid. Typically δ is very large so that even small deviations of the temperature from the ref-
erence temperature lead to O(1) changes in �. For polyisobutylene-based liquids, experiments
suggest a sensitivity parameter δ =20 [25], and for polystyrene-based elastic liquids δ =60 [11].
The temperature dependence of the material functions can also be modelled by an Arrhenius-
type law of the from exp[−δ(T̃ − T̃0)/T̃ ]. For the range of temperatures relevant to the flows of
interest the two models do not differ very much [26–28]; therefore, in order to obtain analytical
solutions, we will use the more mathematically tractable Nahme law.

We will adopt a cylindrical coordinate system (r̃, θ, z̃). The equations are non-dimensional-
ized as follows:

r̃ =ar, z̃=hz, ṽ =aω(u,w,αv),

(p̃ −pa, τ̃ )=η0ω(p, τ ), T̃ = T̃0T , f̃ =af.

Here η0 ≡ ηs0 + ηp0 is the zero-shear-rate viscosity of the fluid at the reference temperature.
The important parameters for this problem are the Deborah number De=λ0ωe−ϑw , the retar-
dation parameter β =ηp0/η0, the Nahme-Griffith number Na = (δη0a

2ω2e−ϑw)/(κT̃0) and the
capillary number Ca = (e−θwη0aω)/γ where ϑw is the reduced wall temperature.

3. One-dimensional flow: a necessary condition

We claim that for viscoelastic fluids there is no solution with u = v = 0 in flows in which
viscous heating is significant. Assume for the moment that u=v=0, then the governing equa-
tions reduce to

r
∂p

∂r
=−τθθ , (3.1)

∂w

∂z2
+α2

(
∂w

∂r2
+ 1

r

∂w

∂r
− w

r2

)
= ∂�

∂z

∂w

∂z
+α2 ∂�

∂r

(
∂w

∂r
− w

r

)
, (3.2)

∂p

∂z
=0, (3.3)

and

∂�

∂z2
+α2

(
∂�

∂r2
+ 1

r

∂�

∂r

)
=−Na e−�

[(
∂w

∂z

)2

+α2
(

∂w

∂r
− w

r

)2
]

. (3.4)

The non-zero stresses are given, respectively, by

τθ,z = β

α
e−� ∂w

∂z
, τrθ =βe−�

(
∂w

∂r
− w

r

)
, (3.5–6)
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and

τθθ =2Deβe−2�

[
1
α2

(
∂w

∂z

)2

+
(

∂w

∂r
− w

r

)2
]

. (3.7)

The boundary conditions are

w =0, �=ϑw on z=0, (3.8)

w = r, �=ϑw on z=1, (3.9)

∂w

∂r
− w

r
=0, �=ϑw on r =1 (3.10)

and the symmetry condition

w =0, when r =0. (3.11)

From Equations (3.1) and (3.3) a necessary condition for a one-dimensional solution to exist
is the compatibility condition

∂τθθ

∂z
=0. (3.12)

In other words the normal stress τθθ must be a function of r only. For a Newtonian fluid the
normal stress is zero; therefore such a one-dimensional flow exists. The situation is, however,
different if the fluid is viscoelastic. The compatibility condition (3.12) imposes an additional
constraint on the velocity so that the system is over-determined. For βDe �=0, Equation (3.12)
can be reduced to the following

∂w

∂z

∂2w

∂r2
+
(

∂w

∂r
− w

r

)(
2
r

∂w

∂z
− ∂2w

∂z∂r

)
=
(

∂w

∂r
− w

r

)
∂w

∂z

∂�

∂r
−
(

∂w

∂r
− w

r

)2
∂�

∂z
. (3.13)

For isothermal flow the solution is w = rz and �=ϑw and Equation (3.13) is satisfied. If
the flow is non-isothermal, the over-determined system (3.2), (3.4) and (3.13) cannot be sat-
isfied in general and so for viscoelastic fluids viscous heating can be expected to lead to sec-
ondary flow, the mechanism responsible being the normal stress gradient. Such normal (hoop)
stress stratification has also been identified as the mechanism driving instability in viscoelastic
Taylor–Couette flow at zero Reynolds number [29]. For non-isothermal flow, Equations (3.2)
and (3.4) must be solved simultaneously for the velocity and temperature. For an exact solu-
tion in an unbounded domain see [19,26,30]. In [21], this problem was solved by a regular
perturbation expansion in Na, while the coupling with the stream function was disregarded.
These solutions do not satisfy the compatibility equation (3.13). In this paper, we discuss con-
ditions under which the uncoupling is valid. We also complete the analysis by solving the
equation governing the stream function.

4. Secondary flow

We introduce a stream function χ defined by

u= 1
r

∂χ

∂z
, v =−1

r

∂χ

∂r
.
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In order to obtain exact analytical solutions, we will seek a solution in powers of the
Nahme–Griffith number Na as follows:

χ =Naχ
′ + · · · , w = rz+Naw

′ + · · · , �=ϑw +Na�
′ + · · · ,

τrr =Na τ
′
rr +· · · , τrθ =Na τ

′
rθ +· · · , τrz =Na τ

′
rz +· · · ,

τθθ = τ̄θθ +Na τ
′
θθ +· · · , τθz = τ̄θz +Na τ

′
θz +· · · , τzz =Na τ

′
zz +· · · ,

p = p̄ +Nap
′
, f =1+Naα2f

′
.

The barred quantities are the isothermal pressure and stresses given by

τ̄θz = βe−ϑw

α
r, τ̄θθ =2

βe−ϑw De
α2

r2, p̄ = (1− r2)
e−ϑwβDe

α2
+Ca.

The perturbation approach is similar to that used by Joseph [5]. Since this expansion is
a linear approximation in Na, it will be most accurate when Na is small. The experiments
of Rothstein and McKinley [11] spanned a range of Na from 10−3 to 1·0. Turian and Bird
[19] showed that, even for Na�0·1, calculated values of the torque in a cone-plate viscometer
reveal an appreciable difference from experimentally measured values. In slit-die viscometry,
Ko and Lodge [16] have found that the relevant values of Na are typically less than 0·1. So
although the expansion in Nahme-Griffith number is used to facilitate analytical calculations,
there are practical applications where Na is small. Let ζ

′ =w
′ −βDeχ

′
r ; then to leading order

in Na, the equations for χ
′
, ζ

′
and �

′
(after dropping the primes) reduce to
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)
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r
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− r
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∂z

)
+βDe2(4β −6)r

∂3χ

∂z2∂r
, (4.1)
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∂z2
+α2
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∂2ζ

∂r2
+ 1

r

∂ζ

∂r
− ζ

r2

)
= r

∂�

∂z
−4βDe

1
r

∂2χ

∂z2
, (4.2)

and

∂2�

∂z2
+α2

(
∂2�

∂r2
+ 1

r

∂�

∂r

)
=−r2. (4.3)

The boundary conditions become

χ =0,
∂χ

∂z
=0, ζ =0, �=0 on z=0, 1, (4.4)

On r =1, we have

χ =0,
∂2χ

∂r2
− ∂χ

∂r
=0, �=0 (4.5)

∂ζ

∂r
− ζ

r
− ∂f

∂z
+α2(1−β)zf =0, (4.6)

and at the centerline r =0, we have

∂

∂r

(
1
r

∂χ

∂r

)
=o(1), ζ =0, |�|<∞. (4.7)
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Lastly, the free-surface deflection satisfies the equation

d3f

dz3
+α2 df

dz
− C̃a

[
α3 ∂3χ

∂r3
+3α

∂3χ

∂r∂z2

]
=0. (4.8)

Here C̃a =Cae−θw/α = (η0ωa2e−θw )/(hγ ). The analysis presented in this paper can be applied
to other choices of the boundary conditions as well. In particular, we will discuss later the
effect of applying an insulated boundary condition at the free surface, i.e., ∂�/∂r =0 on r =1.

4.1. Newtonian fluids

For a Newtonian fluid βDe = 0 so that the right-hand side of Equation (4.1) is zero. The
stream function χ satisfies a homogeneous equation with homogeneous boundary conditions
which admits of only the trivial solution χ ≡ 0. Hence, for a Newtonian fluid, no secondary
flow is generated.

4.2. Non-Newtonian fluids

For viscoelastic fluids βDe �= 0 so that Equation (4.1) is non-homogeneous. As remarked
above, χ →0 as βDe→0; therefore we re-scale as follows:

χ =βDeχ̂ , f =βDef̂ .

Substituting in Equations (4.1–4.3) and dropping the hats, we obtain
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+α2

(
∂2ζ

∂r2
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r

∂ζ
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r2
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= r

∂�
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−4β2De2 1

r

∂2χ

∂z2
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and

∂2�

∂z2
+α2

(
∂2�

∂r2
+ 1

r

∂�

∂r

)
=−r2. (4.11)

The boundary conditions remain the same, except for (4.6), which becomes

∂ζ

∂r
− ζ

r
−βDe

∂f

∂z
+βDeα2(1−β)zf =0, (4.12)

5. Perturbation expansions

In rheometric applications the aspect ratio α is small, typically less than 0·1 [1, Chapter 10].
However, the limit α→0 of Equations (4.9–4.11) is singular since boundary conditions at the
free surface cannot be satisfied. In this section we will solve the equations using the method
of matched asymptotic expansions. For the inner expansion we will introduce a stretched var-
iable ξ = (1 − r)/α so that ∂/∂r = −α−1∂/∂ξ . Consequently, the term χrzz on the right-hand
side of Equation (4.9) becomes −α−1χξzz. Therefore, in order to have the correct balance of
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the terms on both sides of the equation, we must have βDe2/α at most O(1). Linear stabil-
ity analysis has shown that viscoelastic torsional flow tends to be destabilized by elastic forces
[9,13]. Specifically, torsional flow becomes unstable if the Deborah number De is greater than
some critical Deborah number Dec, which depends on the aspect ratio α. For α<<1, the crit-
ical Deborah number scales like

√
α [10]. Hence, if the Deborah number is greater than Dec,

the steady flow becomes unstable and a Hopf bifurcation to a time-dependent solution occurs
[15]. Thus, stable steady flow is to be expected only if De is sufficiently small. In the following
analysis we define a new parameter µ as

µ= De2

α
,

where µ is at most O(1) so that De2 =O(µα).

5.1. Outer solution

Assume an outer expansion

χ =χ0 +O(α), ζ = ζ0 +O(α), �=�0 +O(α), µ=µ0 +O(α). (5.1)

Taking the limit α →0 in (4.9–4.11), we obtain

∂4χ0

∂z4
=4r

(
∂2ζ0

∂z2
− r

∂�0

∂z

)
,

∂2ζ0

∂z2
= r

∂�0

∂z
,

∂2�0

∂z2
=−r2. (5.2–4)

The boundary conditions to be satisfied are

χ0 =0,
∂χ0

∂z
=0, ζ0 =0, �0 =0 on z=0, 1. (5.5)

Equations (5.2–4–5.5) have the solution

χ0 =0, ζ0 = r3

12
z(1− z)(2z−1), �0 = r2

2
z(1− z). (5.6–8)

5.2. Inner solution

Let ξ = (1− r)/α and expand as follows

χ =χi +O(α), ζ = ζ i +O(α), �=�i +O(α), µ=µ0 +O(α). (5.9)

The inner equations are then given by

∇4χi −�0
∂3χ

∂ξ∂z2
=−4

∂2ζ i

∂ξ2
, ∇2ζ i = ∂�i

∂z
, ∇2�i +1=0, (5.10–12)

where

∇2 ≡ ∂2

∂z2
+ ∂2

∂ξ2
,

and

�0 =βµ0(6−4β).
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Since 0≤β ≤1, it follows that �0 ≥0. Note that we have used Equation (5.10–12) to simplify
the right-hand side of Equation (5.10–12). The boundary conditions are

χi = ∂χi

∂z
=0, ζ i =�i =0 on z=0, 1, (5.13)

χi = ∂2χi

∂ξ2
=0, �i = ∂ζ i

∂ξ
=0 on ξ =0. (5.14)

Lastly, we require that the inner solution be bounded as ξ →∞ and that matching with the
outer solution can be achieved in a suitable overlap region. The meniscus deflection satisfies
the equation

d3f

dz3
+ C̃a

(
∂3χ

∂ξ3
+3

∂3χ

∂ξ∂z2

)
=0 (5.15)

subject to the boundary conditions

f (0)=f (1)=0. (5.16)

Equation (5.15) is third order which is why an additional boundary condition is needed. Since
the fluid is incompressible, the free-surface location must satisfy the constraint that the vol-
ume of liquid remains constant. Once the stream function χ has been determined, Equation
(5.15) can then be solved to obtain the meniscus deflection.

We first solve (5.10–12) and (5.10–12) for ζ i and �i and substitute in (5.10–12) to obtain
a non-homogeneous equation for the stream function χ . From [21], we have for the inner
expansion

ζ i = 8
π5

∞∑
n=1

∞∑
m=0

[
Amne−2nπξ +Bmne−(2m+1)πξ +Cmn

]
sin(2nπz), (5.17)

and

�i = 4
π3

∞∑
m=0

(
1− e−(2m+1)πξ

) sin[(2m+1)πz]
(2m+1)3

, (5.18)

where

Amn = −2
(2m+1)[4n2 − (2m+1)2]2

, Bmn = 4n

(2m+1)2[4n2 − (2m+1)2]2
, (5.19–20)

and

Cmn = 1
n(2m+1)2[(2m+1)2 −4n2]

. (5.21)

A composite expansion valid everywhere was given by

ζ = rz+Na

{
r3

12
z(1− z)(2z−1)+ 8

π5

∞∑
n=1

∞∑
m=0

[Amne−2nπ(1−r)/α+

+ Bmne−(2m+1)π(1−r)/α] sin(2nπz)
}

+O(Na2), (5.22)

and

�=ϑw +Na

{
r2

2
z(1− z)− 4

π3

∞∑
m=0

e−(2m+1)π(1−r)/α

(2m+1)3
sin[(2m+1)πz]

}
+O(Na2). (5.23)
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Introduce the change of variables z= y + 1/2; then the stream function (with the subscript i

dropped) satisfies the following boundary-value problem on the semi-infinite strip 0 ≤ ξ <∞,
|y|≤1/2,

∂4χ

∂y4
+2

∂4χ

∂y2∂ξ2
+ ∂4χ

∂ξ4
−�0

∂3χ

∂ξ∂y2
=−4

∂2ζ i

∂ξ2
, (5.24)

together with the boundary conditions

χ = ∂χ

∂y
=0 on y =±1

2
, (5.25)

χ = ∂2χ

∂ξ2
=0 on ξ =0, χ ≡0 as ξ →∞ (5.26)

Provided that �0 is not an eigenvalue of the corresponding homogeneous problem, the
boundary-value problem (5.24–5.26) has a unique non-trivial solution indicating that second-
ary flow is to be expected. In [31] it was shown that all the eigenvalues are purely imaginary.
Since �0 is real, it follows that a unique solution exists for all �0. In order to prove that
secondary flow exists for insulating boundary conditions on the free surface, it will suffice to
show that the right-hand side of Equation (5.24) is not trivial. The solution for an insulat-
ing boundary condition on the free surface as given in Appendix A shows the existence of a
boundary later near the free surface. It should be noted that the boundary-layer terms are of
order O(α); therefore the secondary flow is expected to be weaker than that for isothermal
boundaries.

Exact analytical solutions for the boundary-value problem (5.24–5.26) cannot easily be
found for all values of �0. In general, the problem has to be solved numerically (Olagunju,
submitted for publication). However, in the special case �0 = 0, the problem is amenable to
analytical methods. In this paper we will consider only this special case. Note from Equation
(5.9) that �0 =0 does not imply that βDe2 =0, only that it is O(α2) and that the stream func-
tion χ is then at most O(α). If �0 �= 0, χ is at most O(

√
α). For � = 0, the boundary con-

ditions (5.26) suggest that we use Fourier-sine transforms. Define the Fourier-sine transform
pair

U(k, y)=
∫ ∞

0
χ(ξ, y) sin(kξ)dξ (5.27)

and the inverse

χ(ξ, y)= 2
π

∫ ∞

0
U(k, y) sin(kξ)dk. (5.28)

Taking the Fourier-sine transform of Equation (5.24) and the boundary conditions (5.25), we
obtain

d4U

dy4
−2k2 d2U

dy2
+k4U =F(k, y) (5.29)

and the boundary conditions

U =U
′ =0 on y =± 1

2 , (5.30)

where

F(k, y)=−4
∫ ∞

0

∂2ζ i

∂ξ2
sin(kξ)dξ.
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The solution is

U=
∞∑

n=1

cn(k)

[
sin(2nπy)+2nπ(−1)n

cos
(

k
2

)
sin k −k

sin(ky)−4nπ(−1)n
sin
(

k
2

)
sin k −k

y cos(ky)

]
,

(5.31)

where

cn(k)= (−1)n+1 32
π5

∞∑
m=0

(2nπ)2Amnk

[k2 + (2nπ)2]3
+ (2m+1)2π2Bmnk

[k2 + (2m+1)2π2][k2 + (2nπ)2]2
. (5.32)

Note that the dependence of U on F(k, y) is represented by the constants Amn and Bmn in
Equation (5.32). Then the stream function χ is given by the inversion formula

χ(ξ, y)= 2
π

∫ ∞

0
U(k, y) sin(kξ)dk. (5.33)

Substituting for U in (5.33), we obtain

χ =
∞∑

n=1

Q1,n(ξ) sin(2nπy)+2nπ(−1)nQ2,n(ξ, y)−4nπ(−1)nyQ3,n(ξ, y), (5.34)

where

Q1,n(ξ, y)= 2
π

∫ ∞

0
cn(k) sin(kξ)dk, (5.35)

Q2,n(ξ, y)= 2
π

∫ ∞

0

cn(k) cos
(

k
2

)
sin(ky) sin(kξ)

sin k −k
dk, (5.36)

Q3,n(ξ, y)= 2
π

∫ ∞

0

cn(k) sin
(

k
2

)
cos(ky) sin(kξ)

sin k −k
dk. (5.37)

The values of the integrals in (5.35–5.37) were evaluated using residues and are given in
Appendix B. Since the outer solution for χ is trivial, it follows that Equation (5.34) is uni-
formly valid for all values of r. Contour plots of the stream function χ for selected val-
ues of α are shown in Figures 1–3. The plots show the existence of recirculating vortices.
As α decreases, the secondary flow is localized in a boundary layer near the free surface as
expected.

6. Discussion

In this paper, we have analyzed the effect of viscous heating on the torsional flow of a vis-
coelastic fluid between two parallel plates. As is typical in rheometric applications, we have
assumed that the separation h between the plates is much smaller than the radius a of the
plates. The fluid is modelled by the Oldroyd-B constitutive equation in which the relaxation
time and viscosities are exponential functions of the temperature.

For creeping flow in which the Reynolds number is zero, the flow generated by rotating the
upper plate at constant angular speed is one-dimensional. This forms the basis upon which
the fluid’s viscosity and relaxation time are determined experimentally. The one-dimensional-
flow assumption is true for Newtonian and viscoelastic fluids if the flow is isothermal. How-
ever, the situation is different if viscous heating is present. While the one-dimensional-flow
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Figure 1. Contour plot of the stream function χ for
α =0·1.
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Figure 2. Contour plot of the stream function χ for
α =0·25.
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Figure 3. Contour plot of the stream function χ for α =0·5.

assumption still holds for Newtonian fluids, we have shown that it is not true if the fluid is
viscoelastic. We show that normal (hoop) stress stratification leads to secondary flows with re-
circulating roll cells normal to the direction of rotation. Thus, when dealing with viscoelastic
fluids, proper accounting must be made of the effect of non-isothermally-induced secondary
motion in torsional viscometers.

In our analysis we have used a singular perturbation expansion in α = h/a to determine
the azimuthal velocity and the stream function χ . We assumed that the Deborah number
De = O(

√
α) and then show that the stream function χ = O(βDe) where β is the retardation

parameter. To leading order in α the equation for the stream function uncouples from the
energy equation and the equation for the azimuthal velocity. The stream function is then gov-
erned by a non-homogeneous fourth-order equation in which the forcing term arises from the
normal-stress gradient. Under normal operating conditions in rheometric applications α<<1,
so the strength of the secondary flow is at most O(

√
α).
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Appendix A

In this section we present the solutions of Equations (4.10) and (4.11) when the boundary
condition �=0 is replaced by the insulated boundary condition ∂�/∂r =0 in Equation (4.5)
and the O(De2) term has been dropped as discussed. The exact solution of Equation (4.11) is

�=ϑw +Na
∞∑

m=0

4
(2m+1)π

{
r2

(2m+1)2π2
+ 4α2

(2m+1)4π4
−

− 2α

(2m+1)3π3

I0[(2m+1)πr/α]
I1[(2m+1)π/α]

}
sin[(2m+1)πz]+O(Na2). (A.1)

Here In(z) is the modified Bessel functions of order n. For α <<1 we obtain

�=ϑw +Na

{
r2

2
z(1− z)−8α

∞∑
m=0

e−(2m+1)π(1−r)/α

(2m+1)4π4
sin[(2m+1)πz]

}
+O(Na2). (A.2)

The solution given in Equation (A.2) can be obtained from Equation (A.1) by using the
asymptotic properties of the modified Bessel functions or directly from Equation (4.11) using
the singular perturbation method. Similarly, we obtain for ζ the solution

ζ = rz+Na

{
r3

12
z(1− z)(2z−1)+α

∞∑
n=0

[
Emne−2nπ(1−r)/α +Fmn

]
sin(2nπz)

}
+

+O(Na2), (A.3)

where

Emn =− 1
8n4π4

− 4
nπ6

∞∑
m=0

(3Cmn +2Bmn) , (A.4)

and

Fmn = 16
π6

∞∑
m=0

Bmn

(2m+1)
e−(2m+1)π(1−r)/α. (A.5)

The constants Bmn and Cmn are defined in Equations (5.19–20–5.21). Note that, unlike
the case with isothermal boundaries discussed in the paper, the expansion must be carried to
order α in this case in order to capture the boundary layer effect.

Appendix B

Denoting pm ≡ (2m+1)π , and qn ≡2nπ , and by zj the complex roots of the equation sin z−
z=0 in the first quadrant, we obtain the stream function in Equation (5.34) as follows:

χ =− 32
π5

∞∑
n=1

∞∑
m=0

6∑
j=1

χj,mn, (B.1)
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where

χ1,mn = (−1)n
Amn

8qn

ξ(1+qnξ)e−qnξ sin(qny), (B.2)

χ2,mn = (−1)n
p2

mBmn(
p2

m −q2
n

)2 sin(qny)

[
e−pmξ − e−qnξ + p2

m −q2
n

2qn

ξe−qnξ

]
, (B.3)

χ3,mn =2q3
nAmn


 1

2Re(�
′′
1(qni))+2Re

∞∑
j=1

eizj ξ
zj cos

( zj

2

)
sin(zj y)

cos(zj )(z
2
j +q2

n)3


 , (B.4)

χ4,mn =2qnp
2
mBmn

[
Re�

′
2(qni)+ 1

2

cosh
(pm

2

)
sinh(pmy)

(sinh pm −pm)(p2
m −q2

n)2
e−pmξ

+2Re

∞∑
j=1

eizj ξ
zj cos

( zj

2

)
sin(zj y)

cos(zj )(z
2
j +p2

m)(z2
j +q2

n)2

]
, (B.5)

χ5,mn =−2q3
nAmn


yRe�

′′
1 (qni)+4Re

∞∑
j=1

eizj ξ
zj sin

( zj

2

)
y cos(zj y)

cos(zj )(z
2
j +q2

n)3


 , (B.6)

χ6,mn =−2qnp
2
mBmn

[
2yRe�

′
2(qni)+ y sinh(

pm

2 ) cosh(pmy)

(sinh pm −pm)(p2
m −q2

n)2
e−pmξ

+4Re

∞∑
j=1

eizj ξ
zj sin(

zj

2 )y cos(zj y)

cos(zj )(z
2
j +p2

m)(z2
j +q2

n)2

]
. (B.7)

Here, we have

�1(z)= z cos
(

z
2

)
sin(yz)eiξz

(sin z− z)(z+ iqn)3
, �2(z)= z cos

(
z
2

)
sin(yz)eiξz

(sin z− z)(z2 +p2
m)(z+ iqn)2

, (B.8–9)

�1(z)= z sin
(

z
2

)
cos(yz)eiξz

(sin z− z)(z+ iqn)3
, �2 = z sin

(
z
2

)
cos(yz)eiξz

(sin z− z)(z2 +p2
m)(z+ iqn)2

. (B.10–11)
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